MATH 5010: Linear Analysis: Test Answer ALL Questions: 5 points for each part 04 Nov 2017. 9:30-11:00

- 1. Suppose that the Euclidean space \mathbb{R}^n is endowed with the usual norm, that is, $||x||_2 :=$ $\sqrt{\sum_{k=1}^{n} |x_k|^2}$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
	- (i) For each $x \in \mathbb{R}^n$, put $||x||_{\infty} := \max_{1 \leq k \leq n} |x_k|$. Using the definition of equivalent norms, show that the norms $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent on \mathbb{R}^n . Proof: Notice that we always have $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$ for all $x \in \mathbb{R}^n$ and thus, $\|\cdot\|_{\infty} \sim \|\cdot\|_2.$ \Box
	- (ii) Let $z = (z_1, ..., z_n) \in \mathbb{R}^n$. Define an element $f \in (\mathbb{R}^n)^*$ by $f(x) = \sum_{k=1}^n x_k z_k$ for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Find $||f||$. *Proof:* Recall that we always have the Cauchy-Schwarz inequality: $|\sum_{k=1}^{n} x_k z_k| \leq$ $||x||_2||z||_2$. This implies that $||f|| \le ||z||_2$. On the other hand, it is clear that $f = 0$ as $z = 0$. Now suppose that $z \neq 0$. Then we have $f(z/\|z\|) = \sum_{k=1}^n \frac{z_k}{\|z\|} z_k = \|z\|$. So, we have $||f|| = ||z||_2$.
- 2. Let $(X, \|\cdot\|)$ be a normed space. Suppose that $X = E \oplus F$ for some closed subspaces E and F of X, that is, $E \cap F = \{0\}$ and for each $x \in X$, there are elements $u \in E$ and $v \in F$ such that $x = u + v$. Now for each $x \in X$, write $x = u + v$ for some $u \in E$ and $v \in F$, define $||x||_1 := ||u|| + ||v||.$
	- (i) Show that $\|\cdot\|_1$ is a norm on X and F is also a closed subspace of X with respect to the norm $\|\cdot\|_1$. *Proof:* It can be directly shown by the definition. \Box
	- (ii) Show that if $(X, \|\cdot\|)$ is a Banach space, then so is the normed space $(X, \|\cdot\|_1)$. *Proof:* Let (x_n) be a Cauchy sequence in X with respect to the norm $\|\cdot\|_1$. Put $x_n = e_n + f_n$ for $e_n \in E$ and $f_n \in F$. It is easy to see that the sequences (e_n) and (f_n) both are Cauchy sequences in E and F respectively in the norm $\|\cdot\|$. Since $(X, \|\cdot\|)$ is a Banach space and E, F both are closed, the limits $e := \lim_{n \to \infty} e_n \in E$ and $f := \lim_{n \to \infty} f_n \in F$ both exist with respect to the norm $\|\cdot\|$. If we let $x := e + f$, then by the definition of the norm $\|\cdot\|_1$, we have $\|x_n - x\|_1 \to 0$ as desired. \Box
	- (iii) Write X_1 for the normed space $(X, \|\cdot\|_1)$. Define a linear map

$$
T: x \in E \mapsto \bar{x} \in X_1/F
$$

where \bar{x} denotes the equivalence class of x in X_1/F . Show that T is bounded. *Proof:* We first claim that F is closed with respect to the norm $\|\cdot\|_1$. In fact, if (f_n) is a sequence in F such that the limit $u := \lim f_n$ exists with respect to the norm $\|\cdot\|_1$. Write $u = e + f$ for $e \in E$ and $f \in F$. Then we have

$$
||e|| + ||f - f_n|| = ||u - f_n||_1 \to 0.
$$

So, $e = 0$ and thus, $u = f \in F$, that is, F is closed with respect to the norm $\|\cdot\|_1$. Therefore, the quotient space X_1/F is defined.

Now for $x \in E$, we have $\bar{x} := \inf \{ ||x+y||_1 : y \in F \}$. Therefore, we have $||\bar{x}|| \le ||x||_1 = ||x||$ and hence, $||T|| \leq 1$.

(iv) Show that the inverse $T^{-1}: X_1/F \to E$ of T in (iii) is also bounded. (Hint: the inverse T^{-1} is given by

$$
T^{-1}(\bar{x}) = u \quad \text{if } x = u + v \text{ for } u \in E \text{ and } v \in F. \tag{0.1}
$$

Notice that you have to explain why the Eq. (0.1) is well defined.)

Proof: One can directly check that T is a linear isomorphism with the inverse T^{-1} given by Eq. (0.1) .

Now let $\bar{x} \in X_1/F$ and $x = u+v$ for some $u \in E$ and $v \in F$. Note that if $y \in F$, then we have $||x + y||_1 = ||u|| + ||v + y|| \ge ||u||$. Therefore, we have $||u|| \le ||\bar{x}|| := \inf{||x + y||_1 :}$ $y \in F$. Thus, $||T^{-1}|| \leq 1$.

(Note: in fact, from the proof above, we have shown that T is an isometric isomorphism from E onto X_1/F).

End