MATH 5010: Linear Analysis: Test Answer ALL Questions:

5 points for each part

04 Nov 2017. 9:30-11:00

- 1. Suppose that the Euclidean space \mathbb{R}^n is endowed with the usual norm, that is, $||x||_2 := \sqrt{\sum_{k=1}^n |x_k|^2}$ for $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
 - (i) For each x ∈ ℝⁿ, put ||x||_∞ := max |x_k|. Using the definition of equivalent norms, show that the norms || · ||₂ and || · ||_∞ are equivalent on ℝⁿ.
 Proof: Notice that we always have ||x||_∞ ≤ ||x||₂ ≤ √n ||x||_∞ for all x ∈ ℝⁿ and thus, || · ||_∞ ~ || · ||₂.
 - (ii) Let $z = (z_1, ..., z_n) \in \mathbb{R}^n$. Define an element $f \in (\mathbb{R}^n)^*$ by $f(x) = \sum_{k=1}^n x_k z_k$ for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Find ||f||. *Proof:* Recall that we always have the Cauchy-Schwarz inequality: $|\sum_{k=1}^n x_k z_k| \leq ||x||_2 ||z||_2$. This implies that $||f|| \leq ||z||_2$. On the other hand, it is clear that f = 0 as z = 0. Now suppose that $z \neq 0$. Then we have $f(z/||z||) = \sum_{k=1}^n \frac{z_k}{||z||} z_k = ||z||$. So, we have $||f|| = ||z||_2$.
- 2. Let $(X, \|\cdot\|)$ be a normed space. Suppose that $X = E \oplus F$ for some closed subspaces E and F of X, that is, $E \cap F = \{0\}$ and for each $x \in X$, there are elements $u \in E$ and $v \in F$ such that x = u + v. Now for each $x \in X$, write x = u + v for some $u \in E$ and $v \in F$, define $\|x\|_1 := \|u\| + \|v\|$.
 - (i) Show that || · ||₁ is a norm on X and F is also a closed subspace of X with respect to the norm || · ||₁. *Proof:* It can be directly shown by the definition. □
 - (ii) Show that if (X, || · ||) is a Banach space, then so is the normed space (X, || · ||₁). *Proof:* Let (x_n) be a Cauchy sequence in X with respect to the norm || · ||₁. Put x_n = e_n + f_n for e_n ∈ E and f_n ∈ F. It is easy to see that the sequences (e_n) and (f_n) both are Cauchy sequences in E and F respectively in the norm || · ||. Since (X, || · ||) is a Banach space and E, F both are closed, the limits e := lim e_n ∈ E and f := lim f_n ∈ F both exist with respect to the norm || · ||. If we let x := e + f, then by the definition of the norm || · ||₁, we have ||x_n x||₁ → 0 as desired.
 - (iii) Write X_1 for the normed space $(X, \|\cdot\|_1)$. Define a linear map

$$T: x \in E \mapsto \bar{x} \in X_1/F$$

where \bar{x} denotes the equivalence class of x in X_1/F . Show that T is bounded. *Proof:* We first claim that F is closed with respect to the norm $\|\cdot\|_1$. In fact, if (f_n) is a sequence in F such that the limit $u := \lim f_n$ exists with respect to the norm $\|\cdot\|_1$. Write u = e + f for $e \in E$ and $f \in F$. Then we have

$$||e|| + ||f - f_n|| = ||u - f_n||_1 \to 0.$$

So, e = 0 and thus, $u = f \in F$, that is, F is closed with respect to the norm $\|\cdot\|_1$. Therefore, the quotient space X_1/F is defined.

Now for $x \in E$, we have $\bar{x} := \inf\{\|x+y\|_1 : y \in F\}$. Therefore, we have $\|\bar{x}\| \le \|x\|_1 = \|x\|$ and hence, $\|T\| \le 1$.

(iv) Show that the inverse $T^{-1}: X_1/F \to E$ of T in (iii) is also bounded. (Hint: the inverse T^{-1} is given by

$$T^{-1}(\bar{x}) = u \quad \text{if } x = u + v \text{ for } u \in E \text{ and } v \in F.$$

$$(0.1)$$

Notice that you have to explain why the Eq. (0.1) is well defined.)

Proof: One can directly check that T is a linear isomorphism with the inverse T^{-1} given by Eq. (0.1).

Now let $\bar{x} \in X_1/F$ and x = u + v for some $u \in E$ and $v \in F$. Note that if $y \in F$, then we have $||x + y||_1 = ||u|| + ||v + y|| \ge ||u||$. Therefore, we have $||u|| \le ||\bar{x}|| := \inf\{||x + y||_1 : y \in F\}$. Thus, $||T^{-1}|| \le 1$.

(Note: in fact, from the proof above, we have shown that T is an isometric isomorphism from E onto X_1/F).

End